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Abstract

Given a positive integer s, a noncyclic group of the form G = Z2 × Z2k for
some positive integer k, and a subset A ⊂ G, let [0, s]±A denote the [0, s]-fold
signed sumset of A. We are interested in the case where this signed sumset
is the entire group G; in this case we say that A “spans” G. We investigate,
for a given s, the maximum value of k such that a subset A with exactly two
elements spans G.

This paper extends work done by Haesoo Park in 2020 on this same topic,
providing a different proof for the case of odd values of s and a partial result
for his conjecture for maximum values of k.

1 Introduction

We first define the main objects of our research, then introduce Park’s previous
results.

Definition 1. Let s be a positive integer and let A = {a1, a2, . . . , am}. The [0, s]-fold
signed sumset of A is defined as

[0, s]±A = {λ1a1 + λ2a2 + · · ·+ λmam | |λ1|+ |λ2|+ · · ·+ |λm| ∈ [0, s]}.
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Definition 2. Let s be a positive integer, G be a group, and A a subset of G. Then
A spans G if and only if [0, s]±A = G. In this case we call A a spanning set of G,
and denote by φ± the size of the smallest spanning set of G for a given s:

φ±(G, [0, s]) = min{|A| | [0, s]±A = G}.

Definition 3. For a group of the form G = Z2×Z2k for some k, we call the subset
{0} × Z2k the even elements of G, and the subset {1} × Z2k the odd elements of G.

We also include Park’s results from [2]:

Theorem 4. Given a positive integer s, let k = s2

2 when s is even and k = s2−1
2

when s is odd. Then φ±(Z2 × Z2k, [0, s]) = 2, where the spanning set of Z2 × Z2k is
{(0, 1), (1, s− 1)} when s is even and {(1, s−12 ), (1, s+1

2 )} when s is odd.

Conjecture 5. The value of k found in the theorem above is the largest possible k
for which φ±(Z2 × Z2k, [0, s]) = 2.

Our work provides an alternative proof of Park’s theorem with a different span-
ning set in the case where s is odd, and a result limiting potential counterexamples
to Park’s conjecture.

2 Main results

Theorem 6. For any odd s, let k = s2−1
2 and let G = Z2 × Z2k = Z2 × Zs2−1. The

pair {(0, x), (1, y)} s-spans G, where x and y are defined by

x =

{
s+1
2 , s ≡ 1 mod 4

s−1
2 , s ≡ 3 mod 4

y =

{
s−1
2 , s ≡ 1 mod 4

s+1
2 , s ≡ 3 mod 4.

Theorem 7. If there is a counterexample to Park’s conjecture, i.e. some k > s2

2
such that

φ±(Z2 × Z2k, [0, s]) = 2,

then the spanning pair must be of the form {(0, x), (1, y)} for some x, y ∈ Z2k.
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3 Methods

Theorem 6 [Proof]

We note some basic properties of x and y before continuing:

• x is always odd, and y is always even.

• x+ y = s

• 4xy = 4 · s2−14 = s2 − 1

• x and y are coprime because they differ by 1.

Given an arbitrary element r ∈ G, we show that there are coefficients λ1, λ2 that
span r.

The span of (0, x) will form a subgroup H ≤ G of order s2−1
x = 4y, by our third

identity above. This subgroup will have |G|4y = 2x corresponding cosets. The element
r must lie in one of these cosets, so we will show that each of these cosets can be
reached by some multiple of (1, y).

We show that for each µ ∈ [0, 2x − 1], the product µ · (1, y) reaches a different
one of the 2x cosets of H. Because there are 2x different values µ, this implies that
µ · (1, y) reaches every coset of H.

To show that no two µ reach the same coset, we take two distinct µ1, µ2 ∈
[0, 2x − 1], and assume without loss of generality that µ1 > µ2. Two elements are
in the same coset of H if their difference is in H, so we prove our claim by showing
that (µ1−µ2) · (1, y) 6∈ 〈(0, x)〉. Let µ′ = µ1−µ2 ∈ [1, 2x− 1]. If µ′ · (1, y) ∈ 〈(0, x)〉,
then there is some c such that

µ′ · (1, y) = c · (0, x).

Because x and y are coprime, the only µ′ ∈ [1, 2x − 1] to possibly satisfy the
equation is x. However, because x is odd, the element x · (1, y) is also odd, and
cannot be in the span of (0, x).

The above implies that (1, y) reaches all 2x cosets of 〈(0, x)〉. Therefore, for
any coset of 〈(0, x)〉, there is some λ2 ∈ [0, 2x − 1] such that λ2 · (1, y) is in the
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coset. Because each coset is of order 4y, then if r is in the coset, there is some
λ1 ∈ [−2y + 1, 2y] such that λ1 · (0, x) + λ2 · (1, y) = r. We now turn our attention
to the magnitude of the coefficients λ1, λ2.

To say that the pair spans r, we must have λ1, λ2 such that

λ1 · (0, x) + λ2 · (1, y) = r and |λ1|+ |λ2| ∈ [0, s].

By their selection above, we know that λ1 ∈ [−2y + 1, 2y] and λ2 ∈ [0, 2x− 1],
and therefore that

|λ1|+ |λ2| ∈ [0, 2y + 2x− 1] = [0, 2s− 1].

If |λ1|+ |λ2| ∈ [0, s], we are done. If, however, |λ1|+ |λ2| ∈ [s+1, 2s−1], we must
find new λ′1, λ

′
2 that yield the same element while remaining within the bounds.

We address this case as the final component of the proof.

Choose λ′1, λ
′
2 as follows:

λ′1 =

{
λ1 − 2y, λ1 ≥ 0

λ1 + 2y, λ1 < 0
λ′2 = λ2 − 2x.

These definitions and our selection of λ1, λ2 imply that

|λ′1| = 2y − |λ1| and |λ′2| = 2x− |λ2|.

Consequently

|λ′1|+ |λ′2| = 2y − |λ1|+ 2x− |λ2|
|λ′1|+ |λ′2| = 2(x+ y)− (|λ1|+ |λ2|)
|λ′1|+ |λ′2| = 2s− (|λ1|+ |λ2|) .

Recalling that |λ1| + |λ2| ∈ [s + 1, 2s − 1], the above implies that |λ′1| + |λ′2| ∈
[1, s− 1], which is within the acceptable bounds for the coefficients.

Finally, we verify that λ′1, λ
′
2 span the same element r ∈ G as the original

coefficients λ1, λ2.
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If λ1 ≥ 0, and therefore λ′1 = λ1 − 2y:

λ′1 · (0, x) + λ′2 · (1, y) = (λ1 − 2y) · (0, x) + (λ2 − 2x) · (1, y)

= [λ1 · (0, x) + λ2 · (1, y)]− [2y · (0, x) + 2x · (1, y)]

= r − (0, 4xy)

= r − (0, s2 − 1)

= r − (0, 0)

λ′1 · (0, x) + λ′2 · (1, y) = r.

In the final case where λ1 < 0 and λ′1 = λ1 + 2y

λ′1 · (0, x) + λ′2 · (1, y) = (λ1 + 2y) · (0, x) + (λ2 − 2x) · (1, y)

= [λ1 · (0, x) + λ2 · (1, y)]− 2y · (0, x) + 2x · (1, y)

= r − (0, 2xy) + (0, 2xy)

λ′1 · (0, x) + λ′2 · (1, y) = r.

Thus we have proven that λ′1, λ
′
2 are within the bounds for coefficients and span

the arbitrary element r ∈ G.

Theorem 7 [Proof]

Clearly no pair of the form {(0, x), (0, y)} can span G. We now prove that no pair

of the form {(1, x), (1, y)} can span G for some k > s2

2 .

First, note that the parity of |λ1|+ |λ2| corresponds to the parity of the element
spanned by the coefficients, λ1 · (1, x) + λ2 · (1, y) — if one is even or odd, then
the other must be even or odd, respectively. Due to this correspondence we call a
coefficient pair (λ1, λ2) even or odd according to the parity of |λ1|+ |λ2|.

We view these pairs of coefficients (λ1, λ2) as elements of the two-dimensional
integer lattice Z2([0, s]), where |λ1| + |λ2| ∈ [0, s]. By the table found in [1, p. 28],
we have

|Z2([0, s])| = 2s2 + 2s+ 1. (1)
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We can further divide this set of coefficient pairs into layers of the integer lattice:
for some h ∈ [0, s], its corresponding layer is defined as

Z2(h) = {(λ1, λ2) ∈ Z2 | |λ1|+ |λ2| = h}.

We note another identity from [1, p. 28]:

|Z2(h)| =

{
4h, h ≥ 1

1, h = 0.
(2)

All coefficient pairs in Z2(h) will be even if h is even and be odd if h is odd. By
our observation above, their corresponding sum λ1 ·(1, x)+λ2 ·(1, y) will then be even

or odd, respectively. We will prove that, for k > s2

2 , there are either insufficient odd
elements of Z2([0, s]) to span the odd elements of G, or insufficient even elements of
Z2([0, s]) to span the even elements of G.

Let E(s) denote the set of even coefficient pairs in Z2([0, s]) and let O(s) denote
the set of odd coefficient pairs in Z2([0, s]). Therefore by identity (1) we have

|E(s)|+ |O(s)| = |Z2([0, s])| = 2s2 + 2s+ 1. (3)

Now we calculate, using identity (2), the number of even coefficient pairs |E(s)|
for even s

E(s) = Z2(0) ∪ Z2(2) ∪ · · · ∪ Z2(s)

|E(s)| = |Z2(0)|+ |Z2(2)|+ · · ·+ |Z2(s)|
|E(s)| = 1 + 4 · 2 + · · ·+ 4 · s
|E(s)| = 1 + 4 · (2 + 4 + · · ·+ s)

|E(s)| = 1 + 8 · (1 + 2 + · · ·+ s

2
)

|E(s)| = 1 + 8 ·
s
2 · (

s
2 + 1)

2

|E(s)| = 1 + 8 · s
2 + 2s

8
|E(s)| = s2 + 2s+ 1.
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By identity (3), this implies that |O(s)| = s2 for even s. Now consider the
quantity |E(u)| for some odd u. Because u is odd, no elements of Z2(u) are in E(u),
yielding

E(u) = Z2(0) ∪ Z2(2) ∪ · · · ∪ Z2(u− 1)

E(u) = E(u− 1)

|E(u)| = (u− 1)2 + 2(u− 1) + 1

|E(u)| = u2.

Because of the correspondence between even (odd) coefficient pairs and even
(odd) spanned elements, the quantities |E(s)| and |O(s)| represent the maximum
number of even and odd elements spanned by a pair of elements {(1, x), (1, y)}.

Consider the group G = Z2×Z2k for any k > s2

2 . Because 2k > s2, there will be
more than s2 even and odd elements in G. If s is even, implying that |O(s)| = s2,
then the pair does not span enough odd elements to span all of G. If s is odd, and
therefore |E(s)| = s2, the pair does not span enough even elements to span all of G.

Therefore no pair of the form {(1, x), (1, y)} can span G for k > s2

2 .

No pair of even elements or pair of odd elements can span G for k > s2

2 ,
so any spanning pair for such a G must contain one even and one odd element:
{(0, x), (1, y)}.

4 Future work

A proof of Conjecture 5 remains elusive, and the difference in proof of Theorem
4 for even and odd values of s suggests that a proof of the conjecture may require
two parts.
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