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Abstract

For a given s and k, we consider the group G = Z2 × Z2k. For a subset
{p, q} ⊂ G, we define the s-fold signed sumset to be

[0, s]±{p, q} = {λ1 · p+ λ2 · q : |λ1|+ |λ2| ≤ s}.

We ask, for a given k and the G it defines, whether there exist elements p, q ∈ G
such that [0, s]±{p, q} = G. If there does exist such a pair, we write that

ϕ±(G, [0, s]) = 2.

We seek all solutions s, k to the above equation. The behavior of the function
changes based on the equivalence class mod 4 of s. We place a sharp upper
bound on solutions to the equation, prove complete solutions for when s is odd,
and prove what we conjecture to be complete solutions for even s.

1 Introduction

Our work focuses on [0, s]-fold signed sumsets, and particularly the case where such
a sumset contains its entire ambient group. We begin with some definitions.
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Definition 1.1. For a positive m and a nonnegative h, a layer of the m-dimensional
integer lattice is defined as

Zm(h) = {(λ1, λ2, . . . , λm) ∈ Zm : |λ1|+ |λ2|+ . . .+ |λm| = h}.

For a given s ≥ 0, we also employ an interval notation to describe subsets of the
integer lattice

Zm([0, s]) = {(λ1, λ2, . . . , λm) ∈ Zm : |λ1|+ |λ2|+ . . .+ |λm| ∈ [0, s]}.

Definition 1.2. Let s be a positive integer and let A = {a1, a2, . . . , am}. The [0, s]-
fold signed sumset of A is defined as

[0, s]±A = {λ1 · a1 + λ2 · a2 + · · ·+ λm · am : (λ1, λ2, . . . , λm) ∈ Zm([0, s])}.

Definition 1.3. Let s be a positive integer, G be a group, and A a subset of G.
Then A spans G if and only if [0, s]±A = G. In this case we call A a spanning set
of G, and denote by ϕ± the size of the smallest spanning set of G for a given s

ϕ±(G, [0, s]) = min{|A| : [0, s]±A = G}.

Our work focuses on groups of the form G = Z2×Z2k for which ϕ±(G, [0, s]) = 2.
We include here Park’s results in [2]

Theorem 1.4 (Park, 2020). Given a positive integer s, let k = s2

2 when s is even

and k = s2−1
2 when s is odd. Then ϕ±(Z2 × Z2k, [0, s]) = 2, where the spanning set

of Z2 × Z2k is {(0, 1), (1, s − 1)} when s is even and {(1, s−1
2 ), (1, s+1

2 )} when s is
odd.

Conjecture 1.5 (Park, 2020). The value of k found in the theorem above is the
largest possible k for which ϕ±(Z2 × Z2k, [0, s]) = 2.

2 Main results

Theorem 2.1. Conjecture 1.5 holds: for any given s the value k =
⌊
s2

2

⌋
is the

largest k such that
ϕ±(Z2 × Z2k, [0, s]) = 2.
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Theorem 2.2. The equation ϕ±(Z2 × Z2k, [0, s]) = 2 holds for

• s is odd and k ∈
{
k ∈ N : k ≤

⌊
s2

2

⌋}
• s ≡ 0 mod 4 and k ∈ {k ∈ N : k ≤ s2−s

2 }∪{k ∈ N : k ∈
[
s2−s
2 + 1, s

2

2

]
and k is even}

• s ≡ 2 mod 4 and k ∈ {k ∈ N : k ≤ s2−s
2 }∪{k ∈ N : k ∈

[
s2−s
2 + 1, s

2

2

]
and k ≡

2 mod 4}.

Conjecture 2.3. The values s, k given in Theorem 2.2 are the only solutions to the
equation ϕ±(Z2 × Z2k, [0, s]) = 2.

3 Methods

To prove Theorem 2.1, we first prove some results on the integer lattice Z2([0, s]).
Given a nonnegative integer s, we define two functions E(s) and O(s). E(s) is the
number of coefficient pairs in Z2([0, s]) whose sum is even

E(s) = |{(λ1, λ2) ∈ Z2([0, s]) | |λ1|+ |λ2| ≡ 0 mod 2}|

while O(s) is the number of coefficient pairs in Z2([0, s]) whose sum is odd

O(s) = |{(λ1, λ2) ∈ Z2([0, s]) | |λ1|+ |λ2| ≡ 1 mod 2}|.

For convenience, we call elements of the integer lattice even if the sum |λ1|+ |λ2|
is even, and call them odd if the sum is odd.

We now prove a lemma concerning these two functions, which will be useful
when the parity of (λ1, λ2) ∈ Z2([0, s]) determines some property of a group element
corresponding to (λ1, λ2).

Lemma 3.1. The functions E(s) and O(s) adhere to the following formulae:

E(s) =

{
s2 + 2s+ 1, s ≡ 0 mod 2

s2, s ≡ 1 mod 2

O(s) =

{
s2, s ≡ 0 mod 2

s2 + 2s+ 1, s ≡ 1 mod 2.



Beatty 4

Proof. We begin with two identities derived from the table found in [1, p. 28] —
one concerning the subset Z2([0, s]) of the integer lattice,

|Z2([0, s])| = 2s2 + 2s+ 1, (1)

and a second concerning the size of an individual layer Z2(h) for some h ≥ 0,

|Z2(h)| =

{
4h, h ≥ 1

1, h = 0.
(2)

Because the set Z2([0, s]) can be partitioned into even and odd elements, the
equation below follows from Equation 1

E(s) +O(s) = 2s2 + 2s+ 1. (3)

Given any h ∈ [0, s], it is clear that all the elements of the layer Z2(h) will be
even if h is even and odd if h is odd. With this fact and Equation 2, we calculate
E(s) for even values of s:

E(s) = |Z2(0)|+ |Z2(2)|+ · · ·+ |Z2(s)|
= 1 + 4 · 2 + · · ·+ 4 · s
= 1 + 4 · (2 + 4 + · · ·+ s)

= 1 + 8 · (1 + 2 + · · ·+ s

2
)

= 1 + 8 ·
s
2 · ( s2 + 1)

2

= 1 + 8 · s
2 + 2s

8
E(s) = s2 + 2s+ 1.

By Equation 3, this implies that O(s) = s2 for even values of s.

We now derive the formula for E(s) when s is odd. Clearly no element of the



Beatty 5

layer Z2(s) will be even, so we have:

E(s) = E(s− 1)

E(s) = (s− 1)2 + 2(s− 1) + 1

E(s) = s2.

By Equation 3, we conclude that O(s) = s2 + 2s+ 1 for odd values of s.

We now use Lemma 3.1 to prove a fact about spanning pairs of groups G =
Z2 × Z2k with k > s2

2 .

Proposition 3.2. Let k be a positive integer such that k > s2

2 , and let G = Z2×Z2k.
Let A = {(1, x), (1, y)} be a subset of G. Then [0, s]±A ̸= G, i.e. A does not span
G.

Proof. Take any (λ1, λ2) ∈ Z2([0, s]), and consider the spanned element

(a, b) = λ1 · (1, x) + λ2 · (1, y).

Note that the parity of (λ1, λ2) corresponds to the value, and therefore the parity,
of a — if |λ1|+ |λ2| is even, then a = 0; if it is odd, then a = 1.

We now show that there are either insufficient even elements of Z2([0, s]) to span
the even (a = 0) elements of G, or insufficient odd elements of Z2([0, s]) to span the
odd (a = 1) elements of G.

Recalling that k > s2

2 , calculating the size of the group yields

|G| = |Z2 × Z2k| > 2s2.

We partition G by the value of a for each element, which divides the group into
two halves, each with more than s2 elements.

By Lemma 3.1, if s is even, there are O(s) = s2 odd elements of Z2([0, s]).
Because only odd elements (λ1, λ2) can span odd elements of G, this implies that A
can span at most s2 odd elements of G, which is insufficient to span G.

Again by Lemma 3.1, if s is odd, there are E(s) = s2 even elements of Z2([0, s]).
In this case, there are insufficient even elements of Z2([0, s]) to span the even el-

ements of G. Therefore, for any value of s and any k > s2

2 , the subset A =
{(1, x), (1, y)} cannot span G.
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Next, we impose a further restriction on spanning pairs of G.

Proposition 3.3. Given positive s, k, and a group G = Z2 × Z2k, let A =
{(0, x), (1, y)} be a subset of G. If x is even, then [0, s]±A ̸= G.

Proof. We prove that if x is even, then (0, 1) ̸∈ [0, s]±A. Suppose indirectly that x
is even and that (0, 1) ∈ [0, s]±A, i.e. there exist some λ1, λ2 such that

λ1 · (0, x) + λ2 · (1, y) = (0, 1)

with |λ1|+ |λ2| ∈ [0, s]. Because the first component of (0, 1) is 0, the coefficient λ2

must be even. The equation determining the second component of the sum is

λ1 · x+ λ2 · y ≡ 1 mod 2k.

We have established that λ2 is even, so if x is also even, then the sum on the left side
of the equation must be even, while the right side must be odd, which is impossible.
Therefore (0, 1) cannot be in the span of A, and [0, s]±A ̸= G.

A final restriction on potential spanning pairs will put the final proof of the
conjecture within reach.

Proposition 3.4. Let k be a positive integer such that k > s2

2 , and let G = Z2×Z2k.
Let A = {(0, x), (1, y)} be a subset of G. If y is odd, then [0, s]±A ̸= G.

Proof. If x is even, then A does not span G by Proposition 3.3, so we assume that
both x and y are odd.

Take any (λ1, λ2) ∈ Z2([0, s]), and consider the spanned element

(a, b) = λ1 · (0, x) + λ2 · (1, y).

Because x and y are both odd, b is even if (λ1, λ2) is even, and odd if (λ1, λ2) is
odd — the parity of the coefficients corresponds exactly with the parity of b.

We now show that there are either insufficient even elements of Z2([0, s]) to span
the elements of G with an even second component b, or insufficient odd elements of
Z2([0, s]) to span the elements of G whose second component is odd.

Recalling that k > s2

2 , calculating the size of the group yields

|G| = |Z2 × Z2k| > 2s2.
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We partitionG by the parity of each element’s second component b, which divides
the group into two halves, each with more than s2 elements.

By Lemma 3.1, if s is even, there are O(s) = s2 odd elements of Z2([0, s]). Be-
cause of the established relationship between the parity of (λ1, λ2) and the spanned
group element, this implies that A can span at most s2 elements of G whose second
component is odd.

Again by Lemma 3.1, if s is odd, there are E(s) = s2 even elements of Z2([0, s]).
In this case, there are insufficient even elements of Z2([0, s]) to span the elements of

G whose second component is even. Therefore, for any value of s and any k > s2

2 ,
the subset A = {(0, x), (1, y)} cannot span G if y is odd.

Proposition 3.5. Given some positive integers s and k, suppose that A = {(0, x), (1, y)}
is an s-spanning set for the group G = Z2×Z2k, where x is odd and y is even. Then
the set A′ = {(1, x), (1, y)} is also an s-spanning set for G.

Proof. Because A spans G, there exists some function f : G → Z2([0, s]) that, given
some (a, b) ∈ G, returns (λ1, λ2) ∈ Z2([0, s]) such that

λ1 · (0, x) + λ2 · (1, y) = (a, b).

We use f to construct an analagous function g : G → Z2([0, s]) that, for a given
(a, b) ∈ G, returns (λ1, λ2) ∈ Z2([0, s]) such that

λ1 · (1, x) + λ2 · (1, y) = (a, b),

proving that the set A′ = {(1, x), (1, y)} also spans G.

We begin by defining g(a, b) = f(a, b) for even values of b.

Take some (a, b) ∈ G and let (λ1, λ2) = f(a, b), i.e.

λ1 · (0, x) + λ2 · (1, y) = (a, b).

If b is even, then because x is odd and y is even, λ1 must be even. Consequently,
we know that λ1 · (1, x) = λ1 · (0, x), and therefore that

λ1 · (1, x) + λ2 · (1, y) = λ1 · (0, x) + λ2 · (1, y)
λ1 · (1, x) + λ2 · (1, y) = (a, b),
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so g(a, b) = f(a, b) for even values of b.

Take some (a, b) ∈ G where b is odd and let (λ1, λ2) = f(a, b), i.e.

λ1 · (0, x) + λ2 · (1, y) = (a, b).

When b is odd, then because x is odd and y is even, λ1 must also be odd. In
this case, we define g(a, b) as

g(0, b) = f(1, b) and g(1, b) = f(0, b).

We begin by proving that when a = 0, the function g satisfies the desired prop-
erties. Let (λ1, λ2) = f(1, b) for an odd b. By the definition of f

λ1 · (0, x) + λ2 · (1, y) = (1, b),

so λ2 must be odd. Because λ1 and λ2 are both odd, the sum λ1 + λ2 must be
even. Therefore

λ1 · (1, x) + λ2 · (1, y) = (0, b),

and we define g(0, b) = f(1, b) when b is odd.

We now prove that g(1, b) = f(0, b) for odd b. Let (λ1, λ2) = f(0, b) for some
odd b. By the definition of f

λ1 · (0, x) + λ2 · (1, y) = (0, b),

so λ2 must be even. Because λ1 is odd and λ2 is even, the sum λ1 + λ2 must be
odd. Therefore

λ1 · (1, x) + λ2 · (1, y) = (1, b),

and we define g(1, b) = f(0, b) when b is odd.

We have now proved that the function g : G → Z2([0, s]) defined by the formula

g(a, b) =


f(a, b), b is even

f(1, b), b is odd, a = 0

f(0, b), b is odd, a = 1

satisfies the desired properties, meaning that the set A′ = {(1, x), (1, y)} spans
G.



Beatty 9

We are now ready to prove Theorem 2.1.

Theorem 2.1. Conjecture 1.5 holds: for any given s the value k =
⌊
s2

2

⌋
is the

largest k such that
ϕ±(Z2 × Z2k, [0, s]) = 2.

Proof. Let s be a positive integer, let k > s2

2 , and let G = Z2 × Z2k. Clearly no
subset of the form {(0, x), (0, y)} can span G, and by Propositions 3.2, 3.3, and 3.4,
we know that for G, any spanning pair must have the form A = {(0, x), (1, y)} for
some odd x and even y.

If such a spanning pair existed, however, that would imply by Proposition 3.5
that the set A′ = {(1, x), (1, y)} also spans G. Because Proposition 3.2 proved this
impossible, we have shown that A cannot span G, and therefore no subset of two
elements can span G.

Having proven Theorem 2.1, we now prove all of the solutions to the equation
found in Theorem 2.2.

Proposition 3.6. Let s be a positive integer, and let d, x, y be positive integers such
that

• s2 − d2 is even

• x is odd

• x+ y = s

• x and y are coprime

• 4xy = s2 − d2

then the group Z2 × Zs2−d2 is s-spanned by the pair of elements {(0, x), (1, y)};
therefore

ϕ±(Z2 × Zs2−d2 , [0, s]) = 2.

Proof. For an arbitrary element (a, b) ∈ Z2 × Zs2−d2 , we first show that there are
coefficients (λ1, λ2) ∈ Z2 such that λ1 · (0, x) + λ2 · (1, y) = (a, b).
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The span of (0, x) will form a subgroup H ≤ G of order s2−d2

x = 4y. This

subgroup has |G|
4y = 2x corresponding cosets. The element (a, b) that we wish to

span must lie in one of these cosets, so we first show that each of the cosets can be
reached by some multiple λ2 · (1, y).

For each µ ∈ [0, 2x − 1], the multiple µ · (1, y) reaches a different coset of H,
implying that this set of multiples reaches all 2x cosets of H: take two distinct
µ1, µ2 ∈ [0, 2x−1] and assume without loss of generality that µ1 > µ2. µ1 ·(1, y) and
µ2·(1, y) belong to different cosets because µ1·(1, y)−µ2·(1, y) = (µ1−µ2)·(1, y) ̸∈ H.
To see this, let µ′ = µ1 − µ2 ∈ [1, 2x − 1] and suppose for contradiction that
µ′ · (1, y) ∈ H. This would imply that

µ′ · (1, y) = c · (0, x)

for some integer c. Because x and y are coprime, the only µ′ ∈ [1, 2x− 1] that could
satisfy the above equation is x. But because x is odd, we know that

x · (1, y) = (1, xy) ̸= c · (0, x)

for any c. We therefore conclude that µ · (1, y) spans a different coset of H for each
µ ∈ [0, 2x− 1], and consequently that they span every coset.

We return to our element (a, b) ∈ Z2 × Zs2−d2 . It must lie in some coset of H,
so by our findings above there must be some λ2 ∈ [0, 2x− 1] such that λ2 · (1, y) is
in this same coset. Because each of these cosets is of size 4y, there must be some
λ1 ∈ [−2y + 1, 2y] such that

λ1 · (0, x) + λ2 · (1, y) = (a, b).

There is no guarantee, however, that (λ1, λ2) ∈ Z2([0, s]). Based on the constraints
above, we have only that

|λ1|+ |λ2| ≤ 2y + 2x− 1 = 2s− 1.

If |λ1| + |λ2| ≤ s, then we have found coefficients in Z2([0, s]) that span (a, b) and
are done.

If, however, |λ1|+|λ2| ∈ [s+1, 2s−1], we show that there exist (λ′
1, λ

′
2) ∈ Z2([0, s])

that span the same element (a, b). We select these values as follows:

λ′
1 =

{
λ1 − 2y, λ1 ≥ 0

λ1 + 2y, λ1 < 0
λ′
2 = λ2 − 2x.
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This selection of variables implies that |λ′
1| = 2y−|λ1| and |λ′

2| = 2x−|λ2|. Therefore

|λ′
1|+ |λ′

2| = 2y − |λ1|+ 2x− |λ2|
|λ′

1|+ |λ′
2| = 2(x+ y)− (|λ1|+ |λ2|)

|λ′
1|+ |λ′

2| = 2s− (|λ1|+ |λ2|) .

Because |λ1|+ |λ2| ∈ [s+ 1, 2s− 1], this implies that

|λ′
1|+ |λ′

2| ∈ [1, s− 1],

placing (λ′
1, λ

′
2) within the acceptable bounds for Z2([0, s]).

It remains only to prove that (λ′
1, λ

′
2) span the same element (a, b) as the original

coefficients. If λ1 ≥ 0, meaning λ′
1 = λ1 − 2y, then

λ′
1 · (0, x) + λ′

2 · (1, y) = (λ1 − 2y) · (0, x) + (λ2 − 2x) · (1, y)
= [λ1 · (0, x) + λ2 · (1, y)]− [2y · (0, x) + 2x · (1, y)]
= (a, b)− (0, 4xy)

= (a, b)− (0, s2 − d2)

= (a, b)− (0, 0)

λ′
1 · (0, x) + λ′

2 · (1, y) = (a, b).

If λ1 < 0, meaning λ′
1 = λ1 + 2y, then

λ′
1 · (0, x) + λ′

2 · (1, y) = (λ1 + 2y) · (0, x) + (λ2 − 2x) · (1, y)
= [λ1 · (0, x) + λ2 · (1, y)]− 2y · (0, x) + 2x · (1, y)
= (a, b)− (0, 2xy) + (0, 2xy)

λ′
1 · (0, x) + λ′

2 · (1, y) = (a, b).

Since in either case, the new (λ′
1, λ

′
2) ∈ Z2([0, s]) spans the same element (a, b),

we have that our arbitrary element (a, b) ∈ Z2×Zs2−d2 is s-spanned by the elements
(0, x) and (1, y), as was to be shown.

Lemma 3.7. Let s be a positive integer, G = Z2 × Z2k be a group, and A = {p, q}
be a pair of elements. Then A is a [0, s] signed spanning set for G if and only if it
spans the subset Z2 × {0, 1, . . . , k} ⊂ G.
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Proof. The “only if” direction is clearly true, so we prove the “if” statement. For
any g ∈ G, either g or −g is in the set Z2 × {0, 1, . . . , k} In the latter case, take the
coefficients (λ1, λ2) ∈ Z2([0, s]) that span −g and observe that

−λ1 · p+−λ2 · q = −(λ1 · p+ λ2 · q)
−λ1 · p+−λ2 · q = −(−g)

−λ1 · p+−λ2 · q = g.

Therefore g can also be spanned by the spanning set A, proving our claim.

Definition 3.8. Given some s ≥ 1, a group G = Z2 × Z2k, a pair of elements
A = {(a, x), (b, y)}, and some (c, z) ∈ G, we say that the element (c, z) is directly
spanned if there exist (λ1, λ2) ∈ Z2([0, s]) such that

λ1 · a+ λ2 · b ≡ c mod 2 and λ1 · x+ λ2 · y = z.

Definition 3.9. Given some s ≥ 1, a group G = Z2 × Z2k, a pair of elements
A = {(a, x), (b, y)}, and some (c, z) ∈ G, we say that the element (c, z) is negatively
spanned if there exist (λ1, λ2) ∈ Z2([0, s]) such that

λ1 · a+ λ2 · b ≡ c mod 2 and λ1 · x+ λ2 · y = −1 · 2k + z.

Lemma 3.10. Let Z2 × Z2k be a group with a pair of elements A = {(a, x), (b, y)}
that directly s-span some element (c, z) ∈ Z2 × Z2k. Then for any k′ ∈ N the
corresponding element (c, z) ∈ Z2 × Z2k′ is also directly s-spanned by A.

Proof. The first component of the element spanned λ1 · a + λ2 · b ≡ c mod 2 will
clearly not change between the two groups, and by the definition of direct spanning
we have that

λ1 · x+ λ2 · y = z ≡ z mod 2k′,

so the element (c, z) is directly spanned in both groups.

Proposition 3.11. Given an odd s, the equation

ϕ±(Z2 × Z2k, [0, s]) = 2

holds if and only if k ∈ [1, s
2−1
2 ].

Proof. By Theorem 2.1, the equation does not hold for any k > s2−1
2 . It now remains

to prove the “if” direction.
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Given some odd s, we let k = s2−1
2 and let

x =

{
s+1
2 , s ≡ 1 mod 4

s−1
2 , s ≡ 3 mod 4

y =

{
s−1
2 , s ≡ 1 mod 4

s+1
2 , s ≡ 3 mod 4.

Our choice of x and y satisfies the hypothesis of Proposition 3.6, which we apply
to prove that the set A = {(0, x), (1, y)} s-spans Z2×Zs2−1. Now we prove that the

subset Z2 × {0, 1, . . . , s2−1
2 − 1} is directly spanned by A, which by Lemma 3.7 and

Lemma 3.10 suffices to prove our claim.

For a given (λ1, λ2) ∈ Z2([0, s]) that spans a certain element of Z2 × Zs2−1, we
let µ1 be the coefficient corresponding to s−1

2 and µ2 be the one corresponding to
s+1
2 , i.e.

µ1 =

{
λ2, s ≡ 1 mod 4

λ1, s ≡ 3 mod 4
µ2 =

{
λ1, s ≡ 1 mod 4

λ2, s ≡ 3 mod 4.

Because µ1 · s−1
2 + µ2 · s+1

2 ≥ −s2−s
2 for all (µ1, µ2) ∈ Z2([0, s]), then for any

(a, b) ∈ Z2 × {0, 1, . . . , s2−1
2 − 1} that is negatively spanned by such a (µ1, µ2), we

have that b ∈ [ s
2−s−2

2 , s
2−1
2 − 1]. For a negatively spanned b in this range we know

that µ1 + µ2 = −s. For suppose that µ1 + µ2 ≥ −s+ 1, and observe that

µ1 ·
s− 1

2
+ µ2 ·

s+ 1

2
≥ (−s+ 1) · s+ 1

2
=

−s2 + 1

2
≡ s2 − 1

2
mod s2 − 1,

which is outside of our established range for negatively spanned b.

For a given (a, b) negatively spanned by some (µ1, µ2) ∈ Z2([0, s]), we divide the
remaining work into two cases. In the case where µ2 = −s and therefore µ1 = 0, we
have that

(s− 2) · s+ 1

2
=

s2 − s− 2

2

which is equivalent mods2 − 1 to

−s · s+ 1

2
=

−s2 − s

2
≡ s2 − s− 2

2
mod s2 − 1.

Furthermore, because −s ≡ (s − 2) mod 2 the coefficients µ′
1 = 0, µ′

2 = s − 2 will
directly span the same element of Z2×Zs2−1 which the coefficients µ1 = 0, µ2 = −s
negatively span.
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In the second case, where µ2 ≥ −s+1 and therefore µ1 ≤ −1, let µ′
1 = µ1+s+1

and µ′
2 = µ2 + s− 1. We first note that

µ′
1 ·

s− 1

2
+ µ′

2 ·
s+ 1

2
= (µ1 + s+ 1) · s− 1

2
+ (µ2 + s− 1) · s+ 1

2

=

(
µ1 ·

s− 1

2
+ µ2 ·

s+ 1

2

)
+

(s+ 1)(s− 1)

2
+

(s− 1)(s+ 1)

2

= b− (s2 − 1) + (s2 − 1)

= b.

Taken together with the fact that µ′
1 ≡ µ1 mod 2 and µ′

2 ≡ µ2 mod 2, the above
implies that (µ′

1, µ
′
2) directly spans the element (a, b) in question. We now prove

that (µ′
1, µ

′
2) ∈ Z2([0, s]), keeping in mind that µ2 ≥ −s+ 1

|µ′
1|+ |µ′

2| = |µ1 + s+ 1|+ |µ2 + s− 1|
= (µ1 + s+ 1) + (µ2 + s− 1)

= (µ1 + µ2) + s+ 1 + s− 1

= −s+ 2s− 2

= s− 2.

We have shown that our new coefficients (µ′
1, µ

′
2) ∈ Z2([0, s]) directly span the

element in question (a, b). This proves that any element in our subset is directly
spanned by A, which as shown above suffices to prove our claim.

Proposition 3.12. For a given positive integer s ≡ 0 mod 4, let G = Z2 × Zs2−4.
Then the pair of elements A = {(0, x), (1, y)} where

x =
s− 2

2
and y =

s+ 2

2

is an s-spanning pair for G. Therefore

ϕ±(Z2 × Zs2−4, [0, s]) = 2.

Proof. Our proposition is a particular case of Proposition 3.6, where d = 2. Because
s ≡ 0 mod 4, we know that x and y are both odd; because they differ by 2, this
further implies that they are coprime. The hypothesis of Proposition 3.6 thus holds,
proving our claim.

Proposition 3.13. For a given positive integer s ≡ 0 mod 4, take any k ≤ s2−s
2 .

The group Z2 × Z2k can be s-spanned by the pair A = {(0, x), (1, y)} where

x =
s− 2

2
and y =

s+ 2

2
,
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and consequently ϕ±(Z2 × Z2k, [0, s]) = 2.

Proof. It suffices by Lemma 3.7 and Lemma 3.10 to show that for k = s2−s
2 , the

subset Z2 × {0, 1, . . . , k} can be directly spanned by A. We proved above in Propo-
sition 3.12 that the group Z2 × Zs2−4 is spanned by A. Observe that for any
(λ1, λ2) ∈ Z2([0, s])

−s2 − 2s

2
≤ λ1 · x+ λ2 · y ≤ s2 + 2s

2
,

so any element (a, b) ∈ Z2 × Zs2−4 that is not directly spanned will instead be
negatively spanned by Definition 3.9 above. Taking an arbitrary (a, b) ∈ Z2 ×
{0, . . . , s2−s

2 } that is negatively spanned by some (λ1, λ2) ∈ Z2([0, s]), we will
show that this same element is directly spanned by the coefficients (λ1, λ2 + 4x) ∈
Z2([0, s]). We first observe that

λ1 · x+ (λ2 + 4x) · y = (λ1 · x+ λ2 · y) + 4x · y
λ1 · x+ (λ2 + 4x) · y = −1 · (s2 − 4) + b+ s2 − 4

λ1 · x+ (λ2 + 4x) · y = b.

Because 4x is even, we also have that λ2+4x ≡ a mod 2, meaning the new coefficients
directly span (a, b). It still remains to be shown that the new coefficients are in
Z2([0, s]).

Because the element is negatively spanned and b ∈ [0, s
2−s
2 ], we know that its

coefficients were generated by the second step in Proposition 3.6, so λ2 < 0 and
|λ1| + |λ2| ∈ [1, s− 1]. We will prove that λ2 ≤ −2x, which implies that the above
coefficients are also in the bounds i.e.

|λ1|+ |λ2 + 4x| ≤ s.

Suppose that λ2 = −2x+ 1 = −s+ 3 and that λ1 = −2. This is the coefficient
pair with the lowest spanned value λ1 · x + λ2 · y such that −2x < λ2 < 0 and
(λ1, λ2) ∈ Z2([1, s− 1]). Calculating this value

λ1 · x+ λ2 · y = −2 · s− 2

2
+ (−s+ 3) · s+ 2

2

= −s+ 2 +
−s2 + s+ 6

2

=
−s2 − s+ 10

2

≡ s2 − s+ 2

2
mod s2 − 4,
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we see that it is outside the assumed range b ∈ [0, s
2−s
2 ]. Therefore for all (λ1, λ2) ∈

Z2([1, s − 1]) that negative span an element with b in this range, we know that
λ2 ≤ −2x. Hence (λ1, λ2 + 4x) ∈ Z2([0, s]) directly spans the element (a, b) while
staying within the bounds for spanning coefficients, which as shown above suffices
to prove our claim.

Lemma 3.14. Let (a, b) ∈ Z2 × Zs2−4 such that b ∈ [ s
2−s+2

2 , s
2+s−4

2 ]. If (a, b) is
negatively spanned by the pair A that spans Z2×Zs2−4, then A also negatively spans
(a, b+ 4).

Proof. Take any negatively spanned element (a, b) within the specified range, and
consider its spanning coefficients (λ1, λ2) ∈ Z2([0, s]). We first observe that the
coefficients (λ1−2, λ2+2) will span the element (a, b+4), as λ2+2 ≡ λ2 ≡ a mod 2,
and

(λ1 − 2) · s− 2

2
+ (λ1 + 2) · s+ 2

2
= b− 2 · s− 2

2
+ 2 · s+ 2

2

(λ1 − 2) · s− 2

2
+ (λ1 + 2) · s+ 2

2
= b+ 4.

We now prove that these coefficients are also in Z2([0, s]). We begin by proving
that λ2 ≤ −2. First, if λ2 = 0, then any value of λ1 can not span (a, b), for

λ1 · x+ 0 · y ≥ −s · s− 2

2

=
−s2 + 2s

2

≡ s2 + 2s− 8

2
mod s2 − 4

which is outside of the specified range for b. Second, if λ2 ̸= 0 but λ2 ≥ −1, then
λ1 ≥ −s+ 1 which implies

λ1 · x+ λ2 · y ≥ (−s+ 1) · s− 2

2
+−1 · s+ 2

2

=
−s2 + 3s− 2

2
− s+ 2

2

=
−s2 + 2s− 4

2

≡ s2 + 2s− 12

2
mod s2 − 4,
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which is also outside of the specified range for b. We have proved that λ2 ≤ −2,
implying that |λ2 + 2| = |λ2| − 2. Clearly we also have that |λ1 − 2| ≤ |λ1| + 2,
meaning

|λ1 − 2|+ |λ2 + 2| ≤ |λ1|+ 2 + |λ2| − 2 = |λ1|+ |λ2| ≤ s.

Therefore (λ1 − 2, λ2 + 2) ∈ Z2([0, s]), proving our claim.

Proposition 3.15. For a positive integer s ≡ 0 mod 4, let k be an even integer
k ≤ s2−4

2 . Then the pair A from above s-spans Z2 × Z2k implying

ϕ±(Z2 × Z2k, [0, s]) = 2.

Proof. Take some i ∈ N, and let ki =
s2−4−4i

2 . We know by Proposition 3.13 that all

elements (a, b) with b ≤ s2−s
2 can be directly spanned by A, and thus are spanned in

Z2×Z2k for any value of k. Next, we prove that A spans any (a, b) ∈ Z2×Z2ki such

that b ∈ [ s
2−s+2

2 , ki]. We first note that if such an element exists, then 4i < s − 4.
If this element is directly spanned in Z2 × Zs2−4, then it is also directly spanned in
Z2 × Z2ki . If it is negatively spanned, then a more involved argument is required.

We prove that the coefficients that span (a, b + 4i) ∈ Z2 × Zs2−4 will span
(a, b) ∈ Z2 × Z2ki . First, consider the coefficients (λ1, λ2) that negatively span
(a, b) ∈ Z2 × Zs2−4.

Because b ∈ [ s
2−s+2

2 , ki], we have that

ki ≥
s2 − s+ 2

2
s2 − 4− 4i

2
≥ s2 − s+ 2

2
4i < s− 4.

We inductively apply Lemma 3.14 up to (a, b+4i) and call its spanning coefficients
(µ1, µ2). The lemma holds for all b+ 4, b+ 8, . . . , b+ 4i because 4i < s− 4 implies

that b+ 4i < s2+s−6
2 , within the range where Lemma 3.14 applies.

Finally, we show that the coefficients (µ1, µ2) that span (a, b+ 4i) ∈ Z2 × Zs2−4

will span (a, b) ∈ Z2 × Z2ki . Clearly the value a of the spanned element will not
change between the two groups, as the spanning pair A and the value µ2 have not.
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Next, because the coefficients negatively span (a, b+ 4i) ∈ Z2 × Zs2−4, we have

µ1 ·
s− 2

2
+ µ2 ·

s+ 2

2
= −1 · (s2 − 4) + b+ 4i

µ1 ·
s− 2

2
+ µ2 ·

s+ 2

2
= −1 · (s2 − 4− 4i) + b,

meaning (µ1, µ2) ∈ Z2([0, s]) will span the element (a, b) ∈ Z2 × Z2ki .

Proposition 3.16. Let s ≡ 2 mod 4 be a positive integer, and let G = Z2×Zs2−16.
Then the pair of elements A = {(0, x), (1, y)} where x = s−4

2 and y = s+4
2 spans G,

meaning
ϕ±(Z2 × Zs2−16, [0, s]) = 2.

Proof. Our proposition is a particular case of Proposition 3.6, where d = 4. Because
s ≡ 2 mod 4, we know that x and y are both odd; because they differ by 4, this
further implies that they are coprime. The hypothesis of Proposition 3.6 thus holds,
proving our claim.

Proposition 3.17. Let s ≡ 2 mod 4 be a positive integer, and let G = Z2×Zs2−16.

Then any (a, b) ∈ G with b ∈ {0, 1, . . . , s2−4s+6
2 } can be directly spanned by A =

{(0, x), (1, y)} where x = s−4
2 and y = s+4

2 .

Proof. Proposition 3.16 establishes that A spans the group G. Each element in
our specified subset is either directly or negatively spanned, so we show that the
negatively spanned ones have another set of spanning coefficients in Z2([0, s]) that
directly span them.

Let (λ1, λ2) ∈ Z2([0, s]) be the coefficients that negatively span some element

(a, b) with b ≤ s2−4s+6
2 . We first show that λ2 ≤ −2x. Assume for contradiction

that λ2 ≥ −2x+ 1 = −s+ 5, and therefore that λ1 ≥ −5. This implies that

λ1 · x+ λ2 · y ≥ (−5) · s− 4

2
+ (−s+ 5) · s+ 4

2

λ1 · x+ λ2 · y ≥ −5s+ 20

2
− s2 − s− 20

2

λ1 · x+ λ2 · y ≥ −s2 − 4s+ 40

2
≡ s2 − 4s+ 8

2
mod s2 − 16,

which is higher than the assumed value b ≤ s2−4s+6
2 . Therefore λ2 ≤ −2x, meaning

|λ1|+ |λ2 + 4x| ≤ |λ1|+ |λ2| ≤ s.
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We have established that (λ1, λ2+4x) ∈ Z2([0, s]), and now show that these new
coefficients directly span (a, b). Because λ2 and λ2 + 4x have the same parity, the
first component a of the spanned element remains unchanged. To see that the same
b is directly spanned, observe that

λ1 · x+ (λ2 + 4x) · y = (λ1 · x+ λ2 · y) + 4x · y
λ1 · x+ (λ2 + 4x) · y = −1 · (s2 − 16) + b+ s2 − 16

λ1 · x+ (λ2 + 4x) · y = b.

Therefore the same element (a, b) is also directly spanned by the pair A, as was to
be shown.

Lemma 3.18. For some s ≡ 2 mod 4, let G = Z2 × Zs2−16 and A = {(0, x), (1, y)}
where x = s−4

2 and y = s+4
2 . For any (a, b) ∈ G with b ∈ [ s

2−4s+8
2 , s

2+4s−42
2 ] that is

negatively spanned by coefficients (λ1, λ2) ∈ Z2([0, s]), the coefficients (λ1−2, λ2+2)
negatively span the element (a, b+ 8) and are also in Z2([0, s]).

Proof. We first show that if the coefficients (λ1, λ2) ∈ Z2([0, s]) negatively span
(a, b), then λ2 ≤ −2. Supposing for contradiction that it isn’t, we split the scenario
into two cases: λ2 = 0 and λ2 ≥ −1 but λ2 ̸= 0.

In the first case, we have that λ1 ≥ −s, implying

λ1 · x+ λ2 · y ≥ −s · s− 4

2

λ1 · x+ λ2 · y ≥ −s2 + 4s

2
≡ s2 + 4s− 32

2
mod s2 − 16,

which exceeds our presumed range for b. In the second case where λ2 ̸= 0, we must
have λ1 ≥ −s+ 1 and therefore

λ1 · x+ λ2 · y ≥ −s+ 1 · s− 4

2
+−1 · s+ 4

2

λ1 · x+ λ2 · y ≥ −s2 + 5s− 4

2
+

−s− 4

2

λ1 · x+ λ2 · y ≥ −s2 + 4s− 8

2
≡ s2 + 4s− 40

2
mod s2 − 16,

which also exceeds our presumed range for b. Therefore we must have λ2 ≤ −2.
This bound implies that

|λ1 − 2|+ |λ2 + 2| ≤ |λ1|+ 2 + |λ2| − 2 = |λ1|+ |λ2| ≤ s
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and thus (λ1− 2, λ2+2) ∈ Z2([0, s]). To conclude our argument we show that these
coefficients span (a, b + 8). First, λ2 + 2 ≡ a mod 2 because it has the same parity
as λ2, and thus the first component a is still spanned. For the second component b
we have

(λ1 − 2) · x+ (λ2 + 2) · y = (λ1 · x+ λ2 · y)− 2 · x+ 2 · y
= b− (s2 − 16)− (s− 2) + (s+ 2)

= b− (s2 − 16) + 4

= b+ 4− (s2 − 16) ≡ b+ 4 mod s2 − 16.

Proposition 3.19. Take any i ≥ 0, and let ki = s2−16
2 − 4i. Then the group

Z2 × Z2ki is s-spanned by A = {(0, x), (1, y)} where x = s−4
2 and y = s+4

2 .

Proof. Proposition 3.16 proves the case where i = 0. Now consider some i ≥ 1 and
its corresponding ki and Z2 × Z2ki . We will prove that the subset Z2 × {0, . . . , ki}
of this group is spanned by A, which suffices by Lemma 3.7 to prove that A spans
the entire group. Any elements (a, b) of this subset that can be directly spanned
in Z2 × Zs2−16 will also be directly spanned in Z2 × Z2ki , so we focus our attention
on elements that can only be negatively spanned in our subset of Z2 × Zs2−16. By

Lemma 3.18, this implies that b ∈ [ s
2−4s+8

2 , ki]. If such a b exists, it follows that

s2 − 4s+ 8

2
≤ ki =

s2 − 16− 8i

2
s2 − 4s+ 8 ≤ s2 − 16− 8i

8i ≤ 4s− 24.

We show by induction that (a, b + 8i) ∈ Z2 × Zs2−16 can also be negatively
spanned. We repeatedly apply Lemma 3.18 to (a, b), then (a, b+8), and so on up to
(a, b+8(i−1)) to prove that (a, b+8i) is negatively spanned. The hypothesis of the
lemma holds for all relevant values b+ 8, . . . , b+ 8(i− 1) because by our inequality
above and the given range for b we have

b+ 8(i− 1) ≤ ki + 8(i− 1)

b+ 8(i− 1) ≤ s2 − 16− 8i

2
+ 8(i− 1)

b+ 8(i− 1) ≤ s2 + 8i− 32

2

b+ 8(i− 1) ≤ s2 + 4s− 56

2
<

s2 + 4s− 40

2
,
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placing b+ 8(i− 1) within the acceptable range.

We have proven that (a, b+8i) can be negatively spanned in Z2×Zs2−16 by some
coefficients (λ1, λ2) ∈ Z2([0, s]). These coefficients will also span (a, b) ∈ Z2×Z2ki =
Z2 × Zs2−16−8i, as they will clearly span the same value a for the first component,
and for the second component will span

λ1 · x+ λ2 · y = −1 · (s2 − 16) + b+ 8i

λ1 · x+ λ2 · y = −1 · (s2 − 16− 8i) + b,

consequently spanning (a, b) ∈ Z2×Z2ki . Therefore every element in Z2×{0, . . . , ki}
is either directly spanned or negatively spanned by our pair A, implying that Z2 ×
Z2ki is s-spanned by A.

Proposition 3.20. Given some s ≡ 2 mod 4 and any k ≤ s2−s
2 , let G = Z2 × Z2k.

Then the subset A = {(0, x), (1, y)} where x = s
2 and y = s−2

2 s-spans G, meaning

ϕ±(Z2 × Z2k, [0, s]) = 2.

Proof. Because s−1 is odd, we apply Proposition 3.11 and find that the set A (s−1)-
spans the group Z2 × Zs2−2s. We will prove that A directly s-spans the subset of

this group Z2×{0, 1, . . . , s2−s
2 }, which suffices to prove our claim by Lemma 3.7 and

Lemma 3.10.

By Proposition 3.11, the subset Z2 × {0, 1, . . . , s2−2s
2 } is already known to be

directly spanned. We divide the rest of the elements in our subset of interest into
four categories:

1. (0, s
2−2s
2 + 2i) for i ∈ N such that i ≤ s−2

4 ;

2. (1, s
2−2s
2 + 2i) for i ∈ N such that i ≤ s−2

4 ;

3. (0, s
2−2s−2

2 + 2i) for i ∈ N such that i ≤ s+2
4 ; and

4. (1, s
2−2s−2

2 + 2i) for i ∈ N such that i ≤ s+2
4 .

We prove that each subset in turn can be directly s-spanned by A.

Case 1
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First, note that for a given i ≤ s−2
4 , we have that

2i · x+ (s− 2i) · y =
2i · s
2

+
(s− 2i)(s− 2)

2

=
2i · s
2

+
s2 − 2s− 2is+ 4i

2

=
s2 − 2s

2
+ 2i,

and that s+ 2i ≡ 0 mod 2. Therefore the coefficients λ1 = 2i, λ2 = s− 2i span the
desired element. To see that they are in Z2([0, s]), observe that for i ≤ s−2

4 we have

|2i|+ |s− 2i| = 2i+ s− 2i = s,

completing our proof for this case.

Case 2

First note that for a given i ≤ s−2
4 , we have that

(y + 2i) · x+ (x− 2i) · y =
(s− 2 + 4i) · s

4
+

(s− 4i) · (s− 2)

4

=
s2 − 2s+ 4is

4
+

s2 − 2s− 4is+ 8i

4

=
s2 − 2s

2
+ 2i,

and that x ≡ 1 mod 2. Therefore the coefficients λ1 = y, λ2 = x span the desired
element. To see that they are in Z2([0, s]), observe that for i ≤ s−2

4 we have

|y + 2i|+ |x− 2i| = y + 2i+ x− 2i = x+ y = s− 1,

completing our proof for this case.

Case 3

First, note that for a given i ≤ s+2
4 , we have that

(y − 1 + 2i) · x+ (x+ 1− 2i) · y = (xy − x+ 2ix) + (xy + y − 2iy)

= 2xy + (y − x) + 2i(x− y)

=
s2 − 2s

2
− 1 + 2i



Beatty 23

and that x+1−2i ≡ 0 mod 2. Therefore the coefficients λ1 = y−1+2i, λ2 = x+1−2i
span the desired element. To see that they are in Z2([0, s]), observe that for i ≤ s+2

4
we have

|y − 1 + 2i|+ |x+ 1− 2i| = s− 4 + 4i

2
+

s+ 2− 4i

2
= s− 1,

completing our proof for this case.

Case 4

First, note that for a given i ≤ s+2
4 , we have that

(−1 + 2i) · x+ (s+ 1− 2i) · y = sy + (y − x) + 2i(x− y)

=
s2 − 2s

2
− 1 + 2i,

and that s+1−2i ≡ 1 mod 2. Therefore the coefficients λ1 = −1+2i, λ2 = s+1−2i
span the desired element. To see that they are in Z2([0, s]), observe that for i ≤ s+2

4
we have

| − 1 + 2i|+ |s+ 1− 2i| = −1 + 2i+ s+ 1− 2i = s,

completing our proof for this case.

Proposition 3.21. For s ≡ 2 mod 4 and k = s2−8
2 , the equation

ϕ±(Z2 × Z2k, [0, s]) = 2

holds.

Proof. We have already proved that for s ≡ 2 mod 4, k = s2−16
2 yields a solution to

our equation. We now prove that k = s2−8
2 is also a solution.

Our spanning set is A = {(0, x), (1, y)}, where x = s−4
2 and y = s+4

2 . Because

λ1 ·x+λ2 ·y ∈ [−s2−4s
2 , s

2+4s
2 ] for all (λ1, λ2) ∈ Z2([0, s]), all elements of Z2×Zs2−16

are either directly or negatively spanned.

We prove that for all directly spanned (a, b) ∈ Z2 × Zs2−16, either the element
(a, b + 8) is also directly spanned or (a, b) can also be negatively spanned in Z2 ×
Zs2−16, meaning that (a, b+ 8) will be negatively spanned in Z2 × Zs2−8.

Because every negatively spanned element is the inverse of a directly spanned
element, by symmetry the above suffices to prove, for all negatively spanned (a, b) ∈
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Z2 × Zs2−16, that (a, b) ∈ Z2 × Zs2−8 is spanned, while (a, b+ 8) ∈ Z2 × Zs2−8 will
be spanned by the (λ1, λ2) that negatively spanned (a, b) ∈ Z2 × Zs2−16.

Given some (λ1, λ2) ∈ Z2([0, s]) that directly spans some (a, b) ∈ Z2 × Zs2−16,
we will prove the above claim about (a, b+ 8) ∈ Z2 × Zs2−8 by applying one of the
following formulae to λ1, λ2

1. The coefficients µ1 = λ1 − 2, µ2 = λ2 + 2 will directly span the element
(a, b+ 8);

2. The coefficients µ1 = λ1, µ2 = λ2 − 4x = λ2 − (2s + 8) negatively span
the element (a, b) ∈ Z2 × Zs2−16 and therefore negatively span (a, b + 8) ∈
Z2 × Zs2−8;

3. The coefficients µ1 = λ1 + s + 2, µ2 = λ2 + 6 − s directly span the element
(a, b+ 8).

While all of the above three coefficient pairs span the given elements, there is no
guarantee that (µ1, µ2) ∈ Z2([0, s]). We now prove that in all cases, at least one of
these pairs is within the bounds, keeping in mind that we are presuming the initial
coefficients directly span the element (a, b).

The first rule will work in many cases. If (a, b) ∈ Z2×Zs2−16 is directly spanned
by λ1, λ2 such that |λ1|+ |λ2| ≤ s− 4, then

|µ1|+ |µ2| ≤ |λ1|+ |λ2|+ 4 ≤ s− 4 + 4 = s,

and the coefficients are within bounds. Further, for any (λ1, λ2) ∈ Z2([0, s]) where
either λ1 ≥ 2 or λ2 ≤ −2, it is guaranteed that

|µ1|+ |µ2| ≤ |λ1|+ |λ2|+ 2− 2 ≤ s.

The second formula is guaranteed to stay in bounds if λ2 ≥ s − 4 because this
implies that |λ2 − 2s+ 8| ≤ | − s+ 4| ≤ |λ2|, and consequently

|µ1|+ |µ2| ≤ |λ1|+ |λ2| ≤ s.

If λ1 ∈ {−1, 0, 1}, then the first formula works when λ2 ≤ s− 5 and the second
formula works when λ2 ≥ s− 4.
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If λ2 = −1, then λ1 ≥ 2 because we assumed the coefficients directly spanned
an element, so formula 1 works. For similar reasons formula 1 also works whenever
λ2 = 0, so we assume below that λ2 ≥ 1.

Keeping track of what we have already proved, we may now assume that the
coefficients directly spanning (a, b) ∈ Z2 × Zs2−16 are such that λ1 ≤ −2, λ2 ∈
[1, s − 5], and |λ1| + |λ2| ≥ s − 3. We first address the particular cases where
λ2 = s− 5 before continuing.

We know that λ1 ≤ −2, so when λ2 ∈ {−3,−2} formula 2 works. On the other
hand, when λ1 ∈ {−5,−4}, we can apply formula 3 and the coefficients stay in the
bounds.

We may now safely assume further that λ2 ∈ [1, s−6], which along with the fact
that λ1 ≤ −2 and |λ1|+ |λ2| = λ2 − λ1 ≥ s− 3 implies

λ2 − λ1 ≥ s− 3

−s ≥ λ1 − λ2 − 3 > λ1 − λ2 − 4

s ≥ λ1 + s+ 2− λ2 + s− 6

s ≥ |λ1 + s+ 2|+ |λ2 + 6− s|.

Therefore formula 3 yields coefficients (µ1, µ2) ∈ Z2([0, s]).

We have proven our claim about directly spanned elements, which we established
above suffices to prove our claim.

Our work above and Park’s result on even s and k = s2

2 in [2] prove Theorem 2.2.

4 Future work

It remains to prove or disprove Conjecture 2.3. We also pose the following general
question:

For a given positive integer s, what is the largest group G of rank two such that
ϕ±(G, [0, s]) = 2 ?

We already know that it is not always a group of the form Z2×Z2k. For example
in the case of s = 4 the largest group is G = Z3 × Z12, while the largest spanned
group of our form is Z2 × Z16.
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